A Theory of Computation Based on Quantum Logic

نویسنده

  • Mingsheng Ying
چکیده

The (meta)logic underlying classical theory of computation is Boolean (twovalued) logic. Quantum logic was proposed by Birkhoff and von Neumann as a logic of quantum mechanics about 70 years ago. It is currently understood as a logic whose truth values are taken from an orthomodular lattice. The major difference between Boolean logic and quantum logic is that the latter does not enjoy distributivity in general. The rapid development of quantum computation in recent years stimulates us to establish a theory of computation based on quantum logic. Finite automata and pushdown automata are two classes of the simplest mathematical models of computation. The present Chapter is a systematic exposition of automata theory based on quantum logic. We introduce the notions of orthomodular lattice-valued (quantum) finite and pushdown automaton. The classes of languages accepted by them are defined. Various properties of automata are carefully reexamined in the framework of quantum logic by employing an approach of semantic analysis, including equivalence between finite automata and regular expressions (the Kleene theorem) and equivalence between pushdown automata and context-free grammars. It is found that the universal validity of many important properties (for example, the Kleene theorem) of automata depend heavily upon the distributivity of the underlying logic. This indicates that these properties do not universally hold in the realm of quantum logic. On the other hand, we show that a local validity of them can be recovered by imposing a certain commutativity to the (atomic) statements about the automata under consideration. This reveals an essential difference between classical automata theory and automata theory based on quantum logic. ∗This work was partly supported by the National Foundation of Natural Sciences of China (Grant No: 60321002, 60496321) and the Key Grant Project of Chinese Ministry of Education (Grant No: 10403)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Quantum Computation, Categorical Semantics and Linear Logic

We develop a type theory and provide a denotational semantics for a simple fragment of the quantum lambda calculus, a formal language for quantum computation based on linear logic. In our semantics, variables inhabit certain Hilbert bundles, and computations are interpreted as the appropriate inner product preserving maps between Hilbert bundles. These bundles and maps form a symmetric monoidal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014